Superconductivity in low dimensions

The concept of interface superconductivity was introduced over 50 years ago. Some of the greatest physicists of that time wondered whether a quasi-two-dimensional (2D) superconductor can actually exist, what are the peculiarities of 2D superconductivity, and how does the reduced dimensionality affect the critical temperature (Tc). The discovery of high-temperature superconductors, which are composed of coupled 2D superconducting layers, further increased the interest in reduced dimensionality structures. In parallel, the advances in experimental techniques made it possible to grow epitaxial 2D structures with atomically flat surfaces and interfaces, enabling some of the experiments that were proposed decades ago to be performed finally. Now we know that interface superconductivity can occur at the junction of two different materials (metals, insulators, semiconductors). This phenomenon is being explored intensely; it is also exploited as a means to increase Tc or to study quantum critical phenomena. This research may or may not produce a superconductor with a higher Tc or a useful superconducting electronic device but it will certainly bring in new insights into the physics underlying high-temperature superconductivity. We have recently reviewed this field of research and have now set out on a longer journey towards further investigating this exciting field of research.

More details can be read in: Physics Express, 1, 208-241 (2011)